Conceptual Design for Converting a Vintage Tractor to a Safe, Functional Electric Tractor

By Anya Guzman, Radhika Marwaha, Varsha Senthil

Tractors are too loud to teach students!

Where: UC Davis Student Experimental Farm

POC: Jim Muck, Field Operations Coordinator

For converting 1950's Allis Chalmers model G **gasoline** tractor on the Student Experimental Farm to **electric** (15-20 hp, 4 hours per charge) we did:

- Conceptual Design
- Grant Writing

D-lab team goes tractor training!

Conceptual Design

Tractor Conversion
 Kit

Battery

Occupational Health

Stakeholder Analysis

Power / Influence

Niekamp Contact

Niekamp Tool Company in Kingston, New York, is excited to share with you the unique and innovative Electric G Tractor.

	Electric G Conve	Parts List /	Packing Slip	
tem #	Part Name	Description	Part # for Vendor	Quantity
1	Bell Housing Plate	Adapter Plate to mount Motor and pulley assembly	BHP 0501	1
2*	Motor Plate	Plate to mount Motor and allow adjustment of belt.	MMP 0502	1
3	Motor Bolts	Special Undercut Head 3/8-16 x 3/4" Socket Head Cap Screws	91274A300	4
4	Motor Cover	Cover to protect Motor from weather and debris as well as backing into things.	BATT CVR	1
5*	Motor Cover Mount	Provides for Attachment of Motor Cover to Motor Plate	MCM 0503	2
6	Motor Pulley	16 Tooth 1.5 wide Pulley with 1008 taper lock bore	P16H150-1008	1
7	Motor Pulley Bushing	1008 taper lock bushing with 7/8 bore	TLB 1008 .875	1
8*	Ball Bearing	6007 Double Sealed Radial Ball	NAC 6007-2NSE	2
9*	Needle Bearing	Provides Support for Pilot Shaft	TOR JH-1112	1
10	Belt	240 Tooth H series Belt 1.50 Inch Wide	240H150	1
11*	Output Pulley	32 Tooth Pulley Custom Machined inside to fit Clutch Drive and Bearing Unit	P32H200-2517	1

The belts seem to last nearly forever...I've heard of one replaced. There are kits as old as 14 Most I've seen that remarked of any problem related to battery life and usage. Running batte batteries. The farmers I heard most from even charged a bit at lunch time. Hope this is useful.

HN

Battery

	Lithium Ion	Lead Acid Battery		
Cost	\$5,000 - \$15,000	\$500 - \$3,000		
Capacity	High energy density (discharge more energy)	Low energy density		
Depth of Discharge	80%	50%		
Efficiency	~95% efficient (charge faster/more solar power can be stored)	~80-85%		
Lifespan	Several lifespans	One lifespan		
Maintenance	Little to no maintenance	Requires maintenance		
weight	~400 lbs.	~1,000 lbs.		
Charge Rate	Fast	Not so fast		
LCA	75-80% of material recyclable Incineration of waste generates electricity and produces a lot of emissions	80% material is recycled for other batteries Easy to recycle Very toxic		

Considerations/ Options	Noise (Wt - 3)	Emissions (Wt - 3)	Training Experience (Wt - 3)	Transferrable Skils (Wt - 2)	Ease of Maintenace (Wt - 2)	Waste Disposal (Wt - 2)	Start -Up Cost (Wt - 1)	Total
Solar and Rechargeability	3+	3+	0	0	1-	2-	1-	2+
Gasoline Tractor	3-	3-	3-	2+	2+	2-	0	7-
Hybrid Tractor: Gasoline and Electric	3+	0	3+	2+	3-	2-	2-	1+
Biofuel	3-	3-	3-	2+	2+	2-	1-	8-

Q:

Solar Rechargeability vs. Hybrid Electric Tractor?

Occupational/ Environmental Health & Safety

- → Student Training Experience
- → Occupational Health
- → Policy ID

Rollover Protection System (ROPS) Source: https://blogs.cdc.gov/niosh-science-blog/2013/04/30/crops/

Sciatica (compression of spinal nerves in lower back) Source: <u>https://www.medindia.net/patients/patientinfo/sciatica.htm</u>

(Seifi et al., 2016)

Components

Tractor Model

SWOT Analysis

	Electric Tractor	Gasoline Tractor		
Strengths	 Has already been converted! Access to D-lab 	Students have worked/train on it		
Weakness	Students limited to our electric tractor once trained; need to be well versed in shifting gears	 Can impair hearing - long term + during training Inhaling particulate matter 		

D-Lab I Deliverables

Recommendations for D-lab 2

Refurbish Tractor	Component Check	Winters' Tractor Parade 202
-Strip components we don't need and	-Engine in the front while retaining hydraulics	
build blueprint	-ROPS, seatbelts, safety mechanisms	
Wiring solar panels + Selection of	Get the design!	
batteries	-lcon of sustainability on	
-Location and	campus	
installation of charging station	-Design competition	1

Bibliography

Seifi, M. R., Hassan-Beygi, S. R., & Ghobadian, B. (2016). Evaluation of a Tractor Diesel Engine Noise Fueled by Water-Diesel

Emulsion. Russian Agricultural Sciences, 2016, Vol. 42, No. 5, pp. 394-401. DOI:10.3103/S1068367416050219

"Solectrac Electric Tractors: eUtility." / Solectrac

https://www.solectrac.com/eutility

Sulfation build-up, and Using the Battery Repair Mode on Genius Chargers. (2020). No.Co.

https://no.co/support/sulfation-and-battery-repair-mode

Cao Ruizhong, Chen Jian, Yu Wenzhi, and Wu Jianzhong. (2014). Web.

https://www.wholesalesolar.com/blog/lead-acid-vs-lithium-batteries/

SketchUp Components:-----

