Sustainable Sanitation Block for Student's Mall: A Feasibility Study

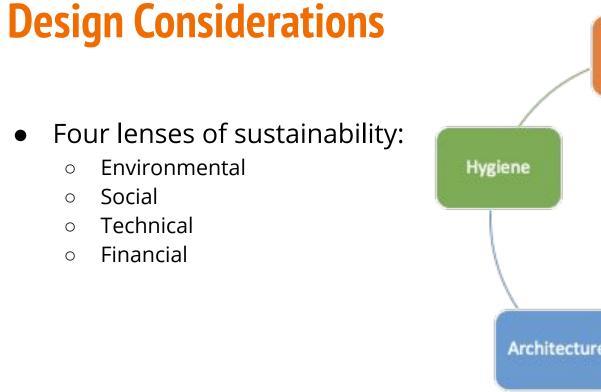
University of Abomey-Calavi, Benin

Sam Rodriguez, Daisy Guitron, Joe Wildman, Kylie Bodle

Introduction & Outline

Background	Final Project Definition	Methodology	Sector Results	Conclusion/ Recomendations	
Benin	Project Statement	Evaluative Matrix,	Interior		
University of	Goals	SWOT Analysis,	Environment		
Abomey-Calavi		Project Framing	Rainwater Collection		
			Energy		
	1 1		Wastewater		
UCDAVIS	Lap		Management		

- A student mall on the University of Abomey-Calavi (UAC) campus lacks adequate sanitation resources
- Over 45,000 students attend UAC
- Approximately 500 people visit the mall each day

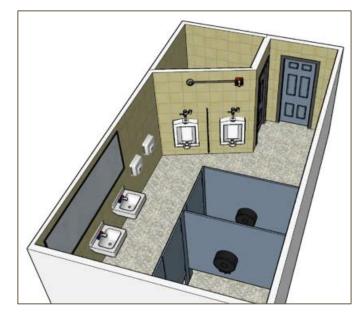

Project Statement

• Dr. Charlene Gaba, a researcher at UAC, requested a feasibility study on implementation of a sanitation block within the student mall

- We evaluated installation of a system utilizing:
 - Touchless, solar-powered sinks and toilets
 - A septic system for wastewater management
 - Rainwater catchment as a backup source to UAC-provided water

Methodology - SWOT Analysis

Strengths	Weaknesses
 Land already acquired Demand for sanitation Many resources are available on alternative water systems design 	- Touchless faucets can be unreliable - Financial resources are unknown
Opportunities	Threats
 Obvious need to improve hygiene and sanitation resources Learning opportunity for students on sustainable, off-grid resources 	 Sourcing material and hardware may be challenging Maintenance requirements Cultural preferences for a bathroom are likely different than those in the U.S.



Solar Septic Architecture

Indoor Environmental Quality Results

Areas

- 1. Air Quality
 - a. Air quality can impact respiratory health
 - b. Ventilation lowers health risks
- 2. Lighting
 - a. Natural and Artificial
- 3. Hand Hygiene
 - a. Hand washing and drying
- 4. Accessibility

Courtesy of Sketchup

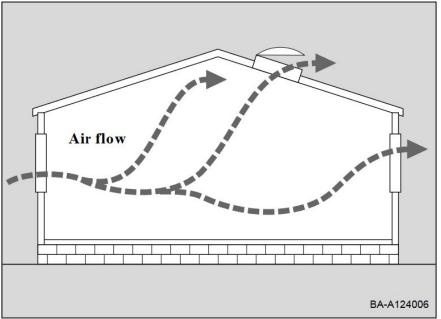
Ventilation Standards

Ventilation System	Relevant Codes	Specification	
Mechanical	ICC Mechanical Code 401, 403 ASHAE/ANSI 90.1-2007	cfm = 662 ft ³ /min (1125 m ³ /hr) Bph = 24 + (cfm-20000) ×0.0012 Pfan= bhp × 746 / E_{motor} $\rightarrow \frac{1}{2}$ HP (425 W) blower motor	
Natural	ICC Mechanical Code 401, 402	7600-15,000 L/min - m ²	
Hybrid	Combination of above	1/3 HP blower motor & 7,600 L/min - m ²	

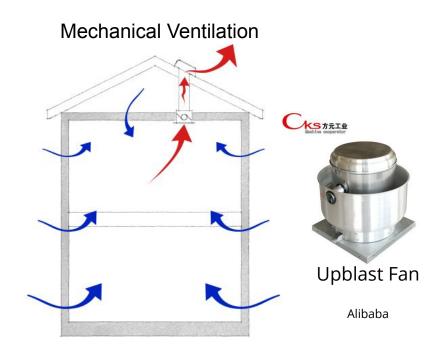
ICC = International Code Council

ASHAE = American Society of Heating and Air-Conditioning Engineers

ANSI = American National Standards Institute


Temperature/Lighting Standards

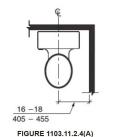
Facility System	Relevant Codes	Specification			
Temperature	ICC Building Code S 1203	Maintain indoor temperature around 20°C (68°F)			
Lighting	ICC Building Code Section 1204, ICC Mechanical code 402	Artificial light (107 lux at 30-in height) Natural light			
HandICC Building Code SectionHygiene402, 604		Automatic faucets and hand-dryers			
ICC = International Code Council					



Sun Tunnel solarskylights.com

Natural Ventilation

Department of Energy. (1994). *Cooling Your Home Naturally* (No. DOE/CH10093-221). Retrieved from Department of Energy website: https://www.nrel.gov/docs/legosti/old/15771.pdf


Alfano, S. (2016, July 19). Whole-House Mechanical Ventilation, an Overview. Retrieved June 6, 2019, from Pro Remodeler website:

http://www.proremodeler.com/whole-house-mechanical-ventilation-overview 10

Accessibility

Facility Type	Relevant Codes	Specification			
RestroomICC A117.1 Accessible and Usable Buildings and Facilities		Grab bars, sitting toilet clearances, ramp design, flat even floors			
ICC = International Code Council					

WATER CLOSETS IN TYPE A UNITS - WATER CLOSET LOCATION

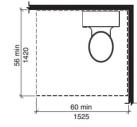
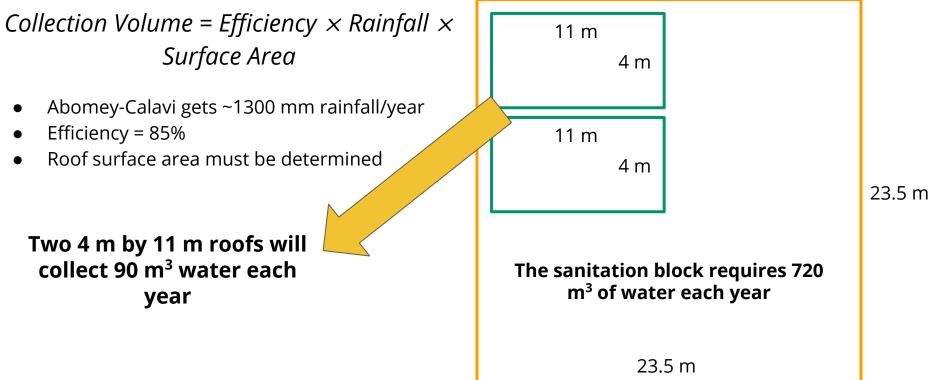
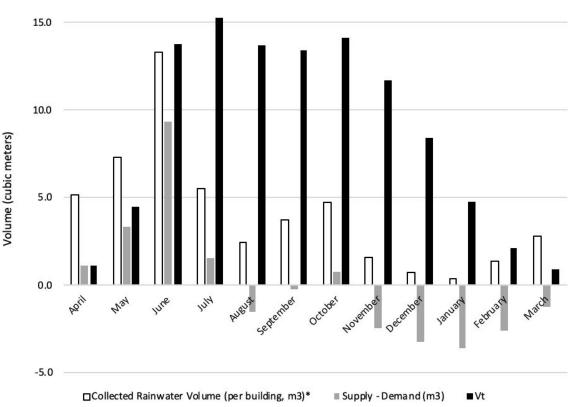



FIGURE 1103.11.2.4(B) WATER CLOSETS IN TYPE A UNITS - MINIMUM CLEARANCE ,

	Components	Unit Cost	Total Quantity	Total Cost	
	LED Lights	\$0.90	20	\$18	
Lighting & Hand Hygiene	Natural Light Fixtures (sun tunnel)	\$150	4	\$600	Paper towels <u>\$3,700/year</u> = (\$0.01/towel X 365
	Hand Dryers (electric)	\$75	4	\$300 (~\$150/yr)	days X 500 people/day x 2 towels/person)
	Faucets (automatic)	\$25	4	\$100	
			Total	\$1240	
	Options	Unit Cost	Total Quantity	Total Cost	
Ventilation Options	Mechanical	\$500	2	\$1000	
	Natural	\$550	2	\$1100	\downarrow
	Hybrid	\$675	2	\$1350 -	\$2590 →

Sector 2 - Rainwater Catchment Results

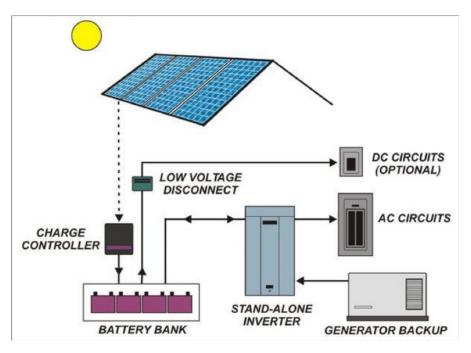


Rainwater Catchment Results - Sizing

 $V_t = V_{t-1} + Supply - Demand$

- *V*_t = water volume remaining
- *V*_{t-1} = water volume remaining from previous month
- Demand = 4 m³
 (average monthly rainfall)

15 m³ tank volume required per building



Rainwater Catchment Results - Costs

	Unit Size	Dimensions (Diameter x Height, m)	Apprx. Cost (USD)	No. of Units Required per Building	No. of Buildings	Total Cost (USD)
	15 m³	2.6 x 3.25	\$2,670	1		\$5,340
Storage tanks	7.6 m ³	2.3 x 2.1	\$900	2	•	\$3,600*
	5.1 m³	1.8 x 2.2	\$780	3		\$4,680
Gutters (PVC)	11 m	NA	\$180	2	2	\$720
First Flush Diverter	1.4 L	NA	\$40	1		\$80
Pumps	140 L/min	NA	\$500	1		\$1,000
NA = Not applicabl	TOTAL	\$5,400				

Sector 3 - Energy

- Solar energy system
- Optimum Tilt:
 - Fixed or adjust: 2 seasons, 4 seasons
- The facility will use solar energy to power the following:
 - Light bulbs
 - Touchless faucets
 - Squatting toilets/Urinals
 - Energy storage
 - Ventilation Fan

Energy Sage. (2019). *Storing Solar Energy: How solar batteries work*. Available from:

https://www.energysage.com/solar/solar-energy-storage/how-do-solar-batteries

-work/

Energy Results- Steps

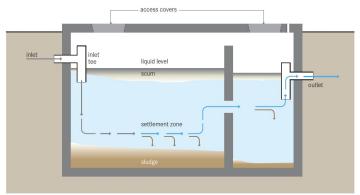
- 1. Determine the energy consumption of electric devices powered by the solar panels
- 2. Select the rated power(watts) of solar panel
- 3. Determine the Daily, Monthly, and Annual Use
- 4. Find the Peak Sun Hour (PSH) of your region
- 5. Determine the off-grid PV System Capacity (kWp)
- 6. Determine the off-grid PV System Capacity (kWp)
- 7. Determine the off-grid PV System Yield (kWh/kWp) (i.e. system expected output)
- 8. Determine the number of needed modules
- 9. Determine the space needed for the amount of panels

Off-grid PV System Capacity $(kWp) = \frac{Daily Energy Use (kWh)}{Peak Sun Hours (hours)}$	(1)
Off-grid PV System Yield (kWh/kWp) = $\frac{Annual Energy Use (kWh)}{PV System Capacity (kWp)}$	(2)
Number of needed modules = $\frac{System Capacity (kWp)}{Module Rated Power (kW)}$	(3)
System Expected Output = PV System Capacity * PV System Yield	(4)
Space needed = $\frac{Roof Size(m2)}{10} * kWp$	(5)

Energy Results- Power Output

Parameter	Units	Minimum	Maximum	Parameter	Units	Minimum	Maximum
Rated Power	Watts	200.00	400.	Daily Energy Demand	kWh	11.0	53.8
Daily Energy Use	kWh	11.0	53.8	Off-grid PV system capacity	kW _p	2.74	11
Monthly Energy	kWh	328.78	1615	Off-grid PV system Demand	kWh/year	3945	19378
Annual Energy Use	kWh	3945.40	19378	Off-grid PV System Yield	kWh/kW _p	1440	1764
Peak Sun Hours (PSH)	Hours	4.00	4.90	Number of PV modules needed	Each	14	27

- In total solar power system will provide **3,945 kWh annually**, .
- The men's building will have four urinals and three squatting toilets and the women will have seven squatting toilets. The total daily energy demand for both facilities is **21.92 kWh**.


Total Cost: \$34,912


Energy Results - Cost

	Elements	Quantity	Min. Cost (\$)	Max. Cost (\$)
	Solar Panels	14	500	700
	stand-alone inverter	1	200	1000
Energy System	charge controller	1	20	100
System	Low voltage disconnect	1	60	130
	AC/DC circuits	1	100	300
	Energy Storage	1	8,500	15,500
	LED Light Bulb	5	8	12
Facility	Touchless Faucets	2	28	33
Elements	Squatting Toilets	3	200	400
	Urinals	4	200	400
	Ventilation fans	2	40	100
	Total		\$ 17,456	\$ 29,956

Decentralized Wastewater Treatment

- Primary and Secondary Treatment Technologies
- Parameters
 - o 7 L/use
 - o 500 users
 - Q = 3.5 L/day
- Primary
 - Septic Tank
 - Holding Tank
 - Anaerobic Baffled Reactor (ABR)
- Secondary
 - Drainage Field
 - Constructed Wetlands

Septic and Holding Tanks

HRT = 1 day

Desludge every year

University already has multiple septic tanks

Holding Tank

- 4 times the size of a septic tank
- 194.4 m³
- Desludge every year

Unit	Value
Max Capacity for 24 hr Retention (L)	3500
Volume for sludge accumulation (L)	35000
Working Tank Volume m ³	39
Water Depth	1.5
Total Depth	1.8
Width	3
Length Compartment 1	6
Length Compartment 2	3
Total Length	9
Designed Tank Volume m ³	48.6

Anaerobic Baffled Reactor

- Baffles create a longer HRT
- Longer HRT for smaller footprint
- Better BOD removal 90% vs 25%

HRT (days)	2
Working Volume (m3)	7
Peak Upflow Velocity (m/hr)	0.54
Design Upflow Velocity (m/hr)	0.3
Number of Compartments	5
Hanging Baffle Clearance (m)	0.2
Upflow to downflow area ratio	3
Compartment width to length ratio	3
Reactor Depth (m)	2
Reactor width (m)	1.4
Reactor Length (m)	2.3
Volume (m3)	6.44
Sludge Accumulation rate (L/cap yr)	1.5
Sludge Accumulation (m/yr)	0.7
Desludge Rate (yr)	1.4

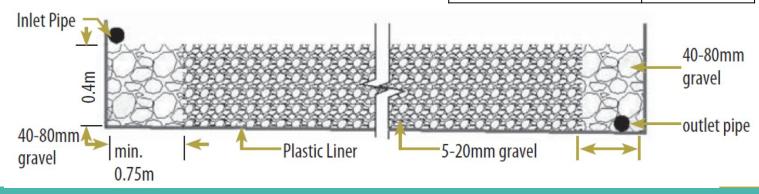
22

Drainage Field

- Large Area
- Potential groundwater pollution
- University uses ground water wells

Unit	Value
Infiltration (L/m ² day)	50
Wall Area (m ²)	70
Depth	0.6
Length (m)	116.7
Enough space for two trenches (m)	58
Width (m)	0.4
Volume of gravel (m ³)	28.1
Area (m ³)	46.68

Constructed Wetlands


Deguenon et al. 2009

- VF CW using Phragmite reeds at the University Reed's Method
 - calculate surface area based on BOD removal
 - cross sectional area based on conductivity

Horizontal Subsurface Flow

Unit	Value
Cin	134
Се	30
Surface Area (m ²)	18
Slope (dH/dS)	0.01
Cross-sectional Area (m ²)	5
width (m)	12.5
Length (m)	3.6

24

	Vault	Septic Tank + Drainage Field	Septic Tank + Constructed Wetlands	ABR + Drainage Field	ABR + Constructed Wetlands
Capacity (m ³)	194.4	48.6	48.6	6.44	6.44
Foot Print (m ²)	97.2	46.68	45	49.9	21.22
HRT (days)	N/A	1	1	2	2
BOD Removal	10%	25%%	90%	90%	90%
Pathogen Removal	0%	0%	N/A	0%	N/A
Sludge Removal Interval (years)	1	1	1	1.4	1.4
Maintenance	Periodically Desludging	Periodically Desludging	Periodically Desludging + Maintaining Health of Wetlands	Periodically Desludging	Periodically Desludging + Maintaining Health of Wetlands
Total Capital Cost ¹	\$ 3,600	\$ 12,300	\$ 3,7	\$ 11,400	\$ 3,315
Operational Cost/year ¹	\$ 3,524	\$ 811	\$ 811	\$ 117	\$ 117

Final Details

- Rainwater catchment will provide ~4 m³ of water per month
- Indoor environmental quality will be maintained with an active or hybrid ventilation system

- Solar energy will used to power faucets, toilets, lighting, and a fan for ventilation
- Decentralized WW management will be achieved with ABR-Constructed Wetlands system
- Final cost = \$46,000