

Naman Benday and Daniel M. Dryden **Client: Kurt Kornbluth** Path to Zero Net Energy, Spring 2015

Abstract

Thermoelectric heat recovery is a promising technology for heat recapture and efficiency increase where traditional heat recapture is infeasible. We developed a ranking methodology for the potential of locations for thermoelectric implementation that accounts for the accessibility of the heat source, visibility of the project, cost of power generated, on-site demand for power, and commercial relevance of the application. We applied this metric to a range of on-campus heat sources, and determined the extent to which we recommend implementing this technology on a pilot scale. These results contextualize the potential for thermoelectric heat recovery in achieving campus-wide zero net energy by 2025.

Methodology

- •List criteria for a promising heat source
- Develop evaluative matrix for ranking
- •Score = Criterion Weight * Value Formula
- Based on projected costs and benefits
- Determined through site visits, interviews, data analysis
- Visit potential application sites
 - Photograph areas
 - Measure temperatures with
 - infrared thermometer
 - •Interview staff, employees, managers
- Apply matrix to on-campus heat sources

Criteria	Criterion Weight	Value Formula		
Accessibility	10	Qualitative, 0-10		
Image/Visibility	10	Qualitative, 0-10		
Annual Energy Recovered per \$	8	kWh annual /\$ *2.5		
Demand for Power Generated	4	Qualitative, 0-10		
Commercial Relevance	4	Qualitative, 0-10		

Recommended Actions

- Implement pilot brewery TEGs
- High visibility
- Ease of access
- Transferable directly to industry
- Explore automotive implementation
- Directly offsets Category 1 emissions
- Work with existing research projects (e.g. GM)
- Seek grant money to cover costs
- Develop less expensive technology
- Efficiency/\$ must improve for economic justification
- Need ~10-fold cost reduction for automotive^[1]

Purpose

- Achieve zero net energy campuswide by 2025
- Develop generalizable methodology for ranking heat sources
- Apply methodology to campus resources
- Determine role of thermoelectric heat recovery in campus facilities infrastructure

Results

Criteria	Criterion Weight	Steam Plant	Facility Closet	Campus Fleet	Fleet (Car)	Fleet (Truck)	Pilot Brewery
Accessibility	10	4	6	0	3	3	10
Image/ Visibility	10	0	0	6	4	4	10
Annual Energy Recovered per \$	8	10	7	10	0	0	1
Demand for Power Generated	4	0	5	10	10	10	5
Commercial Relevance	4	0	0	10	10	10	7
Total Score		120	136	130	150	150	256

Background

- •Thermoelectrics generators (TEGs) convert waste heat Thermoelectric Generator directly to T = Temperature electricity
- •Efficiency usually 4–8%^[1] Load (Cellphone, etc..)
- •Dependent on temperature: higher T = higher % Topic of ongoing research and improvement
- Potentially useful where
- •Traditional heat exchange infeasible
- •Electricity can be readily used Heat is otherwise unrecovered

- **Steam Plant**
 - •Low-quality heat: max 175 °C Limited area for application
 - No substantial power demand Heat needed as heat: better insulation
 - •Already extremely efficient!

Facilities Closets

•Low-quality heat: max 160 °C No substantial power demand •Heat needed as heat: better insulation Asbestos hazard poses health risks

Fleet Services

- •High temperature "True" waste heat
- •Cannot be recovered as heat usefully
- •40% of total fuel power wasted^[2,3] Difficult, expensive to implement
- •Cost per vehicle: \$3000-6000/kW^[2] Low direct visibility, but good press Substantial savings
 - •~5% increase in fuel economy^[3]
- •17,000 gallons of fuel saved
- •170 tons of CO₂ emissions offset per year^[4] •Large data set eases further analysis

Pilot Brewery

- •Low-quality heat: max 100 °C
- Low duty cycle limits power generated Excellent visibility
- Classes Extension classes
- Industry contacts
- •Well-known and prestigious facility
- Easy to implement Simple installation
- Highly conductive surface
- •High commercial relevance •Directly transferrable to small breweries

Conclusions

- Limited implementation feasible
- Fleet Services
- Pilot Brewery
- Technology still immature
- Extreme efficiency of existing facilities limits opportunities for implementation

Acknowledgments

Josh Morejohn, Facilities Management Prof. Chris Simmons, Food Science Dan MccCann, Fleet Services David Franklin, FLEET SERVICES Sweta Agarwal, Facilities Management

References

- 1. Smith, K. & Thornton, M. Feasibility of thermoelectrics for waste heat recovery in conventional vehicles. (National Renewable Energy Laboratory, 2009).
- 2. Meisner, G. P. Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM. (2011).
- 3. LeBlanc, S. Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications. Sustainable Materials and Technologies 1-2, 26-35 (2014).

4. Calculations and References, at

http://www.epa.gov/cleanenergy/energy-resources/refs.html Accessed 1 June 2015

Contact

Naman Benday, nsbenday@ucdavis.edu

Daniel M. Dryden, dmdryden@ucdavis.edu