A Biodiesel Processor Feasibility study at the University of California, Davis

Groupmates: Rujuta Munshi Xiange Wang Imby Abath

Presentation Outline

- 1. Project Background
 - a. Product, client, biodiesel
- 2. Method
- 3. Results and Discussion
 - a. Cost Benefit Analysis / ROI
 - b. Sensitivity Results
 - c. Competitors
 - d. Emission Analysis
- 4. Final Recommendation

1. Project Background Problem Statement:

• Perform a neutral feasibility study for the Springboard Biodiesel processors, and determine the financial and environmental benefits for an oil to biodiesel converter on the campus of UC Davis

Client:

- Company: Springboard Biodiesel
- Contact: Matthew Roberts, President of SpringBoard Biodiesel
- Product: Springboard Biodiesel Biopro 190

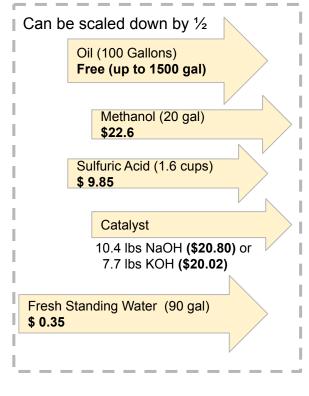
2. Methodology

Considerations

- UC Davis currently gets cooking oil filtered and reused for cooking
- later recycled and turned into biodiesel by filta

Constraints

• Incentives to use biodiesel on campus


Assumptions:

- Used cooking oil disposed by UC Davis
- 12,000 lbs/year \rightarrow 8 lb/gal \rightarrow 1500 gallons

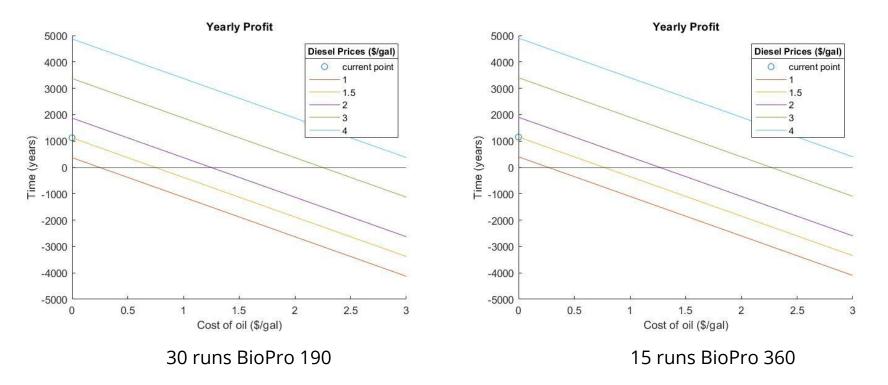
Analysis

Objective: cost/benefit + return in investment, sensitivity, emission reduction calculation Subjective: market analysis

Product Overview: 100 gal capacity

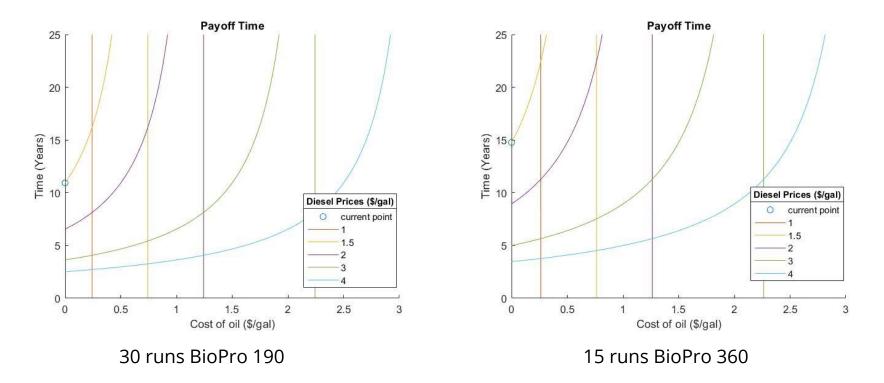
\$97.74 for 1 100 gal run \$99.77 for 2 50 gal runs

Cost Benefit Analysis


Biopro 190: \$12,225 Biopro 360: \$16,995

Cost per 100 gal ~\$100 Diesel Costs: \$1.5-\$3/gal

Profit per run: \$50 - \$200

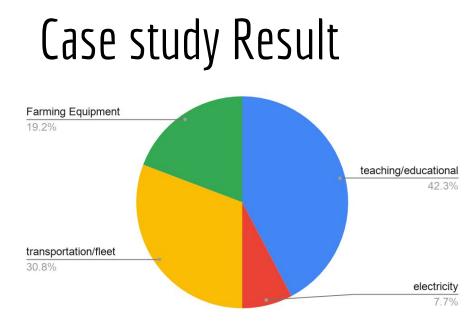

Input / Output	Quantity	Cost (\$ / run)
Oil	100 gal	0
Methanol	20 gal	22.6
Sulfuric Acid	1.6 cups	9.85
NaOH	10.4 lbs	20.80
КОН	7.7 lbs	20.02
Water	90 gal	.35
Electricity	27kWh	2.03
Glycerol Disposal	10 gal	1.4
Maintenance	Yearly Cost	= 410.44/ runs = 20.69

Sensitivity Analysis

Expected lifespan is 20 years

Sensitivity Analysis

Competitors


							Preparation	
Company	Product	Cost	Gallons	Time	Safety	Ease of use	time	\$/gallon
Springboard						Automated		
Biodiesel	BioPro 190	\$12,250	50	48 hours	CE Mark	system	30 minutes	1.06
Biodiesel Kit	40 Gallon					Not		
Store	Processor	\$3,895	40	7-10 hours	Safety First Kit	Automated*	30 minutes	
US Freedom								
Biofuels	BD65	\$12,152.80	65	48 hours		Not Automated	15 minutes	0.9

*Built in mist washing system. Easily wash your biodiesel.

Total number of users studied: 23 out of 150

User Size: 10-22000 people

Most popular: Biopro 190

Gallon produced: 100-1000 gallon/month

Similar Case: Truman State University, Culinary Institute of CA- St. Helena

Insights: farm and school with irregulation equipment most successful

Emission Analysis

Biodiesel provides a lifecycle reduction in greenhouse gas emissions of 76.4% relative to average petroleum diesel.

Emission Type/Biodiesel reduction	B100
carbon monoxide	-48%
unburned hydrocarbon	-67%
particulates	-47%
sulfates	-100%
ozone Specialized HC	-50%

	B100	Diesel 1 gallon	biodiesel 1 gallon	annual reduction 1500 gallons
carbon				
monoxide	-48%	22.2 lb	11.544 lb	15984 lb

Final Recommendation

BioPro 190

- Quick Return on Investment
 - if diesel is usually purchased at 3\$ (payoff time ~5 yrs)
 - Diesel users are willing to maintain system
- Biodiesel from Free Dining Commons Oil < Russel Ranch Uses
 - Growth of program, decrease payback time

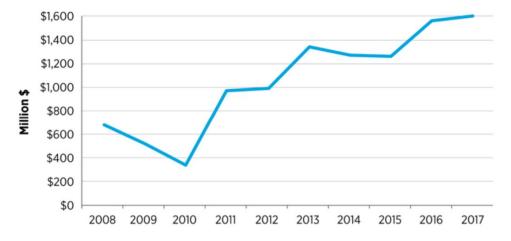
Source of Uncertainty and Next Step

- Explore UC wide options to implement biodiesel
- Find use of biodiesel on campus
 - User should be interested in maintaining the system
 - Continue communication with Russel Ranch and Student Farm
- Quality of biodiesel competitors/springboard would need testing
- Life cycle analysis of the biodiesel production
- Competitors and incentives can vary depending on year and school
 - Dining services on board
 - This year's free oil will be lower due to lower use of dining facilities on campus
 - Reliable source elsewhere

The End

Questions

http://www.springboardbiodiesel.com/


Ayre, James. "Formula E Uses Recharging Generators That Run On Glycerine." CleanTechnica, 4 Nov. 2016.

[1] Emission Facts: Average Carbon Dioxide Emissions Resulting from Gasoline and Diesel Fuel, US Environmental Protection Agency, EPA420-F-05-001, Feb 2005.

[2] Environmental Protection Agency, Renewable Fuel Standards Program Regulatory Impact Analysis, released in February 2010

 $(http://www.extension.org/pages/Used_and_Waste_Oil_and_Grease_for_Biodiesel).$

Government Incentives on Biodiesel

Figure 25. Estimated federal investment in the biodiesel tax credit

Sources: EIA 2018a, Table 10.4; AFDC 2018d. Calculated by multiplying biodiesel production by tax incentive of \$1.00/gallon.

Client

Company: Springboard Biodiesel

Contact: Matthew Roberts, President of SpringBoard Biodiesel

Product: Springboard Biodiesel Biopro 190 & 380

Matts' Goals:

- Expansion of product within all UC's
- Receive a neutral study explaining benefits of technology

3. Research Finding and Outcomes-Case Study

Users:

- 99 schools (USA, Saudi Arabia, Costa Rica, Pakistan)
- 3 Hospitality resorts, 3 casino, 3 restaurant groups
- Farms, Co-ops, remote island and fire station
- User size range from 30 people to 10000 people

Usage:

- Educational- lab
- Transportation and fuel

Goal

• Create comprehensive analysis and audit of the use of Springboard products to better inform future users