# UC Davis Health Campus Education Building Retrocommissioning Client Name: Dan Mendonsa (Energy Manager, UC Davis Health)

-Rhys Davis & Ranjith Narasimhamurthy

#### BACKGROUND

- UC Davis Health critical facilities
- Education Building Low-hanging fruit
- Energy Savings
- Retrocommissioning







#### PURPOSE



**Control Programming** 



**Equipment Failure** 



Schedule









#### **ENERGY PROFILE**

- Baseline period: 4/3/2019-4/2/2020
- Electricity Data
  - Some missing data; created linear model
    (OAT + Weekday vs. Electricity) to fill in
    missing data
- Hot Water Data
  - Had flow, supply, and return temperature (necessary to calculate kBTU)
- Chilled Water Data
  - Missing flow data; had to sum up all equipment CHW flows to estimate total



#### ENERGY PROFILE

• Average UC Davis classroom building EUI = 83 kBTU/sf

|                        | Baseline |          |             |           |  |  |  |  |  |  |
|------------------------|----------|----------|-------------|-----------|--|--|--|--|--|--|
|                        | CHW      | HW       | Electricity | Total     |  |  |  |  |  |  |
| Energy<br>(MMBTU/year) | 10,628   | 3,540    | 7,361       | 21,529    |  |  |  |  |  |  |
| Cost (\$/year)         | \$58,451 | \$26,553 | \$172,579   | \$257,584 |  |  |  |  |  |  |
| EUI (kBTU/sf)          |          |          |             | 119       |  |  |  |  |  |  |
| MTCO2e                 | 63.8     | 187.6    | 194.2       | 445.6     |  |  |  |  |  |  |

#### EQUIPMENT ANALYSIS - AHU

• Most common AHU issues



#### **EQUIPMENT ANALYSIS - VAVs**



#### SAVINGS METHODOLOGY - BinSim Tool

|        |      |         |      |       |         | Tota | Ibuilding | Total AHU | Average  | AHU cooling | AHU        | Zone   |             |                 | Return Far | n              |            |
|--------|------|---------|------|-------|---------|------|-----------|-----------|----------|-------------|------------|--------|-------------|-----------------|------------|----------------|------------|
| OAT    | Hrs  | s/yr RA | T SA | T MAT | r % OSA | load | ļ.        | airflow   | zone DAT | energy      | heating    | rehear | t Fan speed | Supply Fan Powe | r Power    | Fan power      | Fan energy |
| ₽F     |      | ₽F      | ₽F   | ≌F    |         | Btu/ | h         | cfm       | ₽F       | kBtu        | kBtu       | kBtu   | %           | kW              | kW         | kW             | kWh        |
|        | 108  | 3       | 74.5 | 55.0  | 79.5    | 15%  | 201,586   | 9,572     | 2 55.0   | 73          | 15         | 0      | 0 6         | 8% 6.           | 4          | 2.4 8.         | 8 26       |
|        | 106  | 3       | 74.5 | 55.0  | 79.2    | 15%  | 201,586   | 9,572     | 2 55.0   | 72          | 16         | 0      | 0 6         | 8% 6.           | 4 3        | 2.4 8.         | 8 26       |
|        | 104  | 1       | 74.5 | 55.0  | 78.9    | 15%  | 201,586   | 9,572     | 2 55.0   | 34          | 16         | 0      | 0 6         | 8% 6.           | 4 :        | 2.4 8.         | 8 12       |
|        | 102  | 9       | 74.5 | 55.0  | 78.6    | 15%  | 201,586   | 9,572     | 2 55.0   | 2,10        | 0          | 0      | 0 6         | 8% 6.           | 4 :        | 2.4 8.         | 8 76       |
|        | 100  | 23      | 74.5 | 55.0  | 78.3    | 15%  | 193,008   | 9,165     | 5 55.0   | 5,28        | 37         | 0      | 0 6         | 5% 5.           | 8          | 2.2 8.         | 0 182      |
|        | 98   | 25      | 74.5 | 55.0  | 78.0    | 15%  | 184,430   | 8,757     | 7 55.0   | 5,44        | 14         | 0      | 0 6         | 2% 5.           | 2          | 1.9 7.         | 2 179      |
|        | 96   | 55      | 74.5 | 55.0  | 77.7    | 15%  | 175,852   | 8,350     | 55.0     | 11,27       | 1          | 0      | 0 5         | 9% 4.           | 7          | 1.7 6.         | 4 353      |
|        | 94   | 58      | 74.5 | 55.0  | 77.4    | 15%  | 167,274   | 7,943     | 55.0     | 11,13       | 8          | 0      | 0 5         | <b>6%</b> 4.    | 2          | 1.6 5.1        | 7 332      |
|        | 92   | 71      | 74.5 | 55.0  | 77.1    | 15%  | 158,696   | 7,535     | 5 55.0   | 12,85       | 6          | 0      | 0 5         | 3% 3.           | 7          | 1.4 5.         | 1 365      |
|        | 90   | 81      | 74.5 | 55.0  | 76.8    | 15%  | 150,117   | 7,128     | 55.0     | 13,55       | 9          | 0      | 0 5         | 1% 3.           | 3          | 1.2 4.         | 6 368      |
|        | 88   | 98      | 74.5 | 55.0  | 76.5    | 15%  | 141,539   | 6,721     | L 55.0   | 15,29       | 6          | 0      | 0 4         | 8% 3.           | 0          | 1.1 4.         | 1 398      |
|        | 86   | 49      | 74.5 | 55.0  | 76.2    | 15%  | 132,961   | 6,313     | 55.0     | 7,03        | 4          | 0      | 0 4         | 5% 2.           | 6          | 1.0 3.         | 6 177      |
|        | 84   | 114     | 74.5 | 55.0  | 75.9    | 15%  | 124,383   | 5,906     | 5 55.0   | 15,16       | 52         | 0      | 0 4         | 2% 2.           | 4 1        | 0.9 3.         | 3 371      |
|        | 82   | 98      | 74.5 | 55.0  | 75.6    | 15%  | 115,805   | 5,499     | 55.0     | 11,99       | 1          | 0      | 0 3         | 9% 2.           | 2 (        | <b>J.8</b> 3.0 | 0 290      |
|        | 80   | 127     | 74.5 | 55.0  | 75.3    | 15%  | 107,227   | 5,091     | L 55.0   | 14,20       | 15         | 0      | 0 3         | 6% 2.           | 0 /        | 0.7 2.         | 7 346      |
|        | 78   | 162     | 74.5 | 56.3  | 75.0    | 15%  | 98,649    | 5,028     | 56.3     | 16,45       | i <b>3</b> | 0      | 0 3         | 5% <u>2</u> .   | 0          | 0.7 2.         | 7 436      |
|        | 76   | 121     | 74.5 | 57.7  | 74.7    | 15%  | 90,070    | 4,954     | 1 57.7   | 11,01       | .7         | 0      | 0 3         | 5% 1.           | 9 (        | 0.7 2.         | 7 320      |
|        | 74   | 116     | 74.5 | 59.0  | 74.0    | 100% | 81,492    | 4,868     | 59.0     | 9,12        | 15         | 0      | 0 3         | 5% 1.           | 9 /        | 0.7 2.         | 6 303      |
|        | 72   | 102     | 74.5 | 60.3  | 72.0    | 100% | 72,914    | 4,766     | 5 60.3   | 6,13        | 1          | 0      | 0 3         | 4% 1.           | 9 (        | 0.7 2.         | 6 263      |
|        | 70   | 121     | 74.5 | 61.7  | 70.0    | 100% | 64,336    | 4,642     | 61.7     | 5,04        | 2          | 0      | 0 3         | 3% 1.           | 8 (        | 0.7 2.         | 5 305      |
|        | 68 📃 | 54      | 74.5 | 63.0  | 68.0    | 100% | 55,758    | 4,489     | 63.0     | 1,29        | 19         | 0      | 0 3         | 2% 1.           | 8 (        | 0.7 2.         | 5 133      |
|        | 66   | 134     | 74.5 | 64.3  | 66.0    | 100% | 47,180    | 4,297     | 64.3     | 1,03        | 13         | 0      | 0 3         | 0% 1.           | .8 /       | 0.7 2.         | 4 325      |
|        | 64   | 151     | 74.5 | 65.0  | 65.0    | 90%  | 38,602    | 3,762     | 2 65.0   | )           | 0          | 0      | 0 2         | 7% 1.           | 7 /        | 0.6 2.         | 4 359      |
|        | 62   | 161     | 74.5 | 65.0  | 65.0    | 76%  | 30,023    | 3,503     | 66.6     | 5           | 0          | 0      | 954 2       | 5% 1.           | 7 /        | 0.6 2.         | 4 384      |
|        | 60   | 241     | 74.5 | 65.0  | 65.0    | 66%  | 21,445    | 3,503     | 68.8     | 1           | 0          | 0      | 3,488 2     | 5% 1.           | 7 /        | 0.6 2.         | 4 573      |
|        | 58   | 207     | 74.5 | 65.0  | 65.0    | 58%  | 12,867    | 3,503     | 3 71.1   |             | 0          | 0      | 4,778 2     | 5% 1.           | 7 /        | 0.6 2.         | 4 493      |
|        | 56   | 183     | 74.5 | 65.0  | 65.0    | 51%  | 4,289     | 3,503     | 3 73.4   |             | 0          | 0      | 5,788 2     | 5% 1.           | 7          | J.6 2.         | 4 436      |
|        | 54   | 204     | 70.5 | 65.0  | 65.0    | 33%  | -4,289    | 3,503     | 3 71.6   | 5           | 0          | 0      | 5,127 2     | 5% 1.           | 7 /        | J.6 2.         | 4 486      |
|        | 52   | 165     | 70.5 | 65.0  | 65.0    | 30%  | -12,867   | 3,503     | 3 73.9   | •           | 0          | 0      | 5,556 2     | 5% 1.           | 7 1        | J.6 2.         | 4 393      |
|        | 50   | 112     | 70.5 | 65.0  | 65.0    | 27%  | -21,445   | 3,503     | 3 76.2   |             | 0          | 0      | 4,736 2     | 5% 1.           | .7 /       | J.6 2.         | 4 267      |
|        | 48   | 144     | 70.5 | 65.0  | 65.0    | 24%  | -30,023   | 3,503     | 3 78.4   |             | 0          | 0      | 7,299 2     | 5% 1.           | 7 1        | J.6 2.         | 4 342      |
|        | 46   | 116     | 70.5 | 65.0  | 65.0    | 22%  | -38,602   | 3,503     | 80.7     | 1           | 0          | 0      | 6,873 2     | 5% 1.           | .7         | J.6 2.         | 4 275      |
|        | 44   | 94      | 70.5 | 65.0  | 65.0    | 21%  | -47,180   | 3,503     | 8 83.0   | )           | 0          | 0      | 6,411 2     | 5% 1.           | .7 /       | J.6 2.         | 4 225      |
|        | 42   | 81      | 70.5 | 65.0  | 65.0    | 19%  | -55,758   | 3,503     | 8 85.2   | 1           | 0          | 0      | 6,232 2     | 5% 1.           | 7 1        | J.6 2.         | 4 194      |
|        | 40   | 35      | 70.5 | 65.0  | 65.0    | 18%  | -64,336   | 3,503     | 87.5     |             | 0          | 0      | 2,980 2     | 5% 1.           | 7          | J.6 2.         | 4 83       |
|        | 38   | 39      | 70.5 | 65.0  | 65.0    | 17%  | -72,914   | 3,503     | 89.8     | 1           | 0          | 0      | 3,618 2     | 5% 1.           | 7 1        | J.6 2.         | 4 92       |
|        | 36   | 30      | 70.5 | 65.0  | 65.0    | 16%  | -81,492   | 3,503     | 92.0     | )           | 0          | 0      | 3,069 2     | 5% 1.           | 7 /        | J.6 2.         | 4 71       |
|        | 34   | 34      | 70.5 | 65.0  | 65.0    | 15%  | -90,070   | 3,503     | 94.3     | 1           | 0          | 0      | 3,803 2     | 5% 1.           | .7 /       | J.6 2.         | 4 82       |
|        | 32   | 19      | 70.5 | 65.0  | 64.7    | 15%  | -98,649   | 3,503     | 96.6     | 5           | 0          | 19     | 2,222 2     | 5% 1.           | 7 1        | J.6 2.         | 4 44       |
|        | 30   | 10      | 70.5 | 65.0  | 64.4    | 15%  | -107,227  | 3,503     | 98.8     | 5           | 0          | 22     | 1,280 2     | 5% 1.           | 7          | J.6 2.         | 4 24       |
| Sec. 1 | 28   | 1       | 70.5 | 65.0  | 64.1    | 15%  | -115,805  | 3,503     | 3 101.1  |             | 0          | 5      | 191 2       | 5% 1.           | 7          | J.6 2.         | 4 3        |
| TOTALS |      | 3650    |      |       |         |      |           |           |          | 177,25      | 2          | 46     | 74,406      |                 |            |                | 10,412     |

#### SCHEDULING - AHU



#### DISCHARGE AIR TEMPERATURE RESET



#### DUCT STATIC PRESSURE RESET



### FAN COIL & AIR CONDITIONING UNIT SETPOINTS

- Based on a linear model created for temperature vs. unit runtime, each degree that the setpoint is increased results in a decrease of ~200 hours of annual run time
- We recommend raising the setpoints for all units to at least 78 degrees
  - ASHRAE 2015 provides a maximum server room temperature recommendation of 80 degrees for critical equipment, with higher allowable levels for most equipment savings shown below

|      | Current   |           |                    |                |             |
|------|-----------|-----------|--------------------|----------------|-------------|
|      | Estimated | Suggested | <b>Current Run</b> | Estimated New  |             |
|      | Setpoint  | Setpoint  | Hours/Year         | Run Hours/Year | % Reduction |
| FC11 | 72        | 78        | 3,154              | 1,840          | 42%         |
| FC12 | 72        | 78        | 8,760              | 7,446          | 15%         |
| FC21 | 69        | 78        | 8,760              | 6,920          | 21%         |
| FC22 | 74        | 78        | 8,760              | 7,972          | 9%          |
| FC23 | 67        | 78        | 5,694              | 3,416          | 39%         |
| FC41 | 72        | 78        | 0                  | 438            | 0%          |
| FC42 | 75        | 78        | 3,592              | 2,978          | 17%         |
| AC11 | 73        | 78        | 788                | 438            | 46%         |
| AC21 | 60        | 78        | 8,760              | 4,993          | 43%         |
| AC22 | 59        | 78        | 4,555              | 526            | 88%         |
| AC31 | 68        | 78        | 3,767              | 1,752          | 53%         |
| AC32 | 71        | 78        | 3,416              | 2,015          | 40%         |
| AC41 | 68        | 78        | 3,154              | 1,226          | 63%         |
| AC42 | 63        | 78        | 8,760              | 5,606          | 36%         |

#### **RESULTS - ALL SPECIFIC RECOMMENDATIONS**

|   | Payback for Recommendations |       |               |            |                            |                 |                         |                    |  |  |  |
|---|-----------------------------|-------|---------------|------------|----------------------------|-----------------|-------------------------|--------------------|--|--|--|
|   | Measure                     | Hours | Cost/<br>Hour | Labor Cost | Equipment/<br>Capital Cost | Ongoing<br>Cost | Total Annual<br>Savings | Payback<br>(Years) |  |  |  |
| 1 | Equipment Issues            | 20    | \$125         | \$2,500    | \$2,500                    | \$0             | \$0                     | NA                 |  |  |  |
| 2 | Scheduling                  | 10    | \$125         | \$1,250    | \$0                        | \$300           | \$19,037                | 0.3                |  |  |  |
| 3 | DAT Reset                   | 30    | \$125         | \$3,750    | \$0                        | \$0             | \$3,269                 | 1.1                |  |  |  |
| 4 | DSP Reset                   | 50    | \$125         | \$6,250    | \$0                        | \$0             | \$3,302                 | 1.9                |  |  |  |
| 5 | FCU/ACU Setpoints           | 5     | \$125         | \$625      | \$0                        | \$0             | \$2,203                 | 0.3                |  |  |  |
|   | All                         | 115   | \$125         | \$14,375   | \$2,500                    | \$300           | \$27,811                | 0.6                |  |  |  |

#### **RESULTS- OVERALL SAVINGS**

|                        | Potential Annual Savings |          |             |                         |  |  |  |  |  |
|------------------------|--------------------------|----------|-------------|-------------------------|--|--|--|--|--|
|                        | снw                      | нw       | Electricity | Total Annual<br>Savings |  |  |  |  |  |
| Energy<br>(MMBTU/year) | 794                      | 1,668    | 466         | 2,928                   |  |  |  |  |  |
| Cost (\$/year)         | \$4,365                  | \$12,513 | \$10,932    | \$27,811                |  |  |  |  |  |
| MTCO2e                 | 4.8                      | 88.4     | 12.3        | 105.5                   |  |  |  |  |  |

| Pre vs. Post           |               |           |                     |  |  |  |  |  |
|------------------------|---------------|-----------|---------------------|--|--|--|--|--|
|                        | Baseline Post |           | Percent<br>Decrease |  |  |  |  |  |
| Energy<br>(MMBTU/year) | 21,529        | 18,610    | 14%                 |  |  |  |  |  |
| Cost (\$/year)         | \$257,584     | \$230,013 | 11%                 |  |  |  |  |  |
| EUI (kBTU/sf)          | 119           | 103       | 14%                 |  |  |  |  |  |
| MTCO2e                 | 445.6         | 340.3     | 24%                 |  |  |  |  |  |

## LONG-TERM RECOMMENDATIONS



#### **ONGOING MEASUREMENT & VERIFICATION**



SCHEDULING



MAINTENANCE PLAN

#### BIBLIOGRAPHY

 Mills, Evan. "Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse Gas Emissions in the United States." Energy Efficiency, vol. 4, no. 2, May 2011, pp. 145–73. DOI.org (Crossref), doi:10.1007/s12053-011-9116-8

A great meta-analysis of RCx studies with average costs, savings, and ECMs

- Fumo, Nelson. "A Review on the Basics of Building Energy Estimation." Renewable and Sustainable Energy Reviews, vol. 31, Mar. 2014, pp. 53–60. ScienceDirect, doi:10.1016/j.rser.2013.11.040.
  - > Taxonomy of various strategies for energy modeling and savings estimates
- 60913.Pdf. https://www.nrel.gov/docs/fy14osti/60913.pdf. Accessed 22 Apr. 2020.
  - Roadmap for effective RCx planning and performance implementation including a priority list for consideration of retrofit measures
- ♦ White\_paper\_classrooms.Pdf.

https://www.krueger-hvac.com/files/white%20papers/white\_paper\_classrooms.pdf. Accessed 22 Apr. 2020.

- > ASHRAE standards for Ventilation effectiveness and Thermal Comfort
- S. T. Taylor, "Resetting Setpoints Using Trim & Respond Logic," p. 6
- S.T. Taylor, "VAV System Static Pressure Setpoint Reset," ASHRAE J., p. 9, 2007
  - > Static Pressure Reset and Discharge Air Temperature Reset