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1. Project Background
1.1 Brief history and context

In 2013, construction was completed at the University of California, Davis West Village. At the time, this
was the largest planned zero net energy (ZNE) community in the United States. Based on the immense
public interest in the project and the connection to UC Davis, researchers have studied the energy
performance of the West Village closely to determine if it is meeting ZNE goals. This level of
data-verified ZNE status analysis is uncommon with ZNE projects, however. Over 80% of commercial
buildings declaring a zero net energy (ZNE) goal do not have data-verified actual ZNE status (Sanguinetti
et al., 2018). Dr. Angela Sanguinetti and her team at the UC Davis Institute of Transportation Studies
have sought to address this issue.

Dr. Sanguinetti has been leading a project for several years that aims to increase West Village occupant
awareness of the ZNE progress of the West Village buildings. The hope is that increased occupant
awareness will affect the energy usage behavior of occupants, thereby helping reduce energy loads and
assist in the achievement of ZNE at West Village. In pursuit of these ends, Dr. Sanguinetti and team have
developed a West Village Energy Dashboard (http://wved.ucdavis.edu/#!/) and supporting ZNE budgets to
inform occupants if the building they are occupying is on track for ZNE status at the end of the year. The
dashboard relies on a model that determines monthly, weekly, daily, and hourly energy “budgets” that
occupants must stay under to remain on track for ZNE status. To clarify further, these “budgets” are
essentially an amount of energy consumption a building should not exceed in a given time period to
ensure a building reaches ZNE status by the end of the year.

1.2 Problem description

Energy budgets are based on the idea that energy demand must equal or fall short of energy production in
order for a building or collection of buildings to reach ZNE status. The usefulness and accuracy of these
budgets is thereby reliant on an accurate accounting of the anticipated energy production of onsite
generators as well as onsite energy demand. For the West Village, both of these are predicted by an
existing model. This model is what informs the West Village Energy Dashboard and is pivotal in the
accuracy and success of the project as a whole.

The current model framework limits its ability to accurately predict both energy production and demand.
Most notably, the model is built off the base assumption that monthly energy demand and production
remain the same year-to-year. While this is a good baseline to start predictions and budgets at the
beginning of a year, the model lacks any dynamic inputs and therefore is inflexible when there is a
discrepancy between the current and previous years’ energy generation and production.  These
discrepancies can occur due to fluctuations in weather, occupancy behaviors, and more. Our team was
tasked with improving this model’s accuracy.

3

http://wved.ucdavis.edu/#!/


1.3 Relevant prior art/literature review

Judd et al. (2013) conducted a study on occupant behavior and found that having a designated person who
would regularly track occupants’ energy consumption and share the results with them, as well as suggest
changes in their behaviour, was the most effective in making a difference in occupancy behaviour.
Coleman et al. (2013) on the other hand, suggests the utilization of wireless technologies to track
occupancy behavior and provide the results directly to the occupants was an effective method in changing
occupancy behavior. The study was found to be encouraging as occupants appreciated the personalized
feedback, however, it was also found to be somewhat impractical to implement many changes in behavior
when it came down to shared office space. Nevertheless, the engagement of occupants in energy
performance is the first step towards a ZNE pathway.

Medrano. et al. (2018) suggests the utilization of linear regression and the software R to build a model
that correlates energy consumption and weather. The model takes into account degree days to include
temperature data. According to Dobson (2019), degree days are defined to be a measure of the duration
and magnitude of the difference between the external temperature in any given day and a base
temperature. A model that incorporates the duration of a temperature difference (i.e. degree days) is
potentially a better energy consumption indicator than one that merely only includes a temperature
difference.

Kneifel and Webb (2016) on the other hand, develop a regression model that utilizes two weather
variables to predict the energy consumption of occupants on a daily level. The model implements
explanatory variables of temperature, plane of array solar irradiance, and the day of every week. This
model was found to be more accurate in its estimation of yearly energy consumption than the more
popular building energy models widely used, like EnergyPlus and TRNSYS. Even more so, the study by
Knefifel and Webb states that a more accurate model predicting energy consumption is possible if
artificial neural networks (ANNs) are implemented. However, the complexity of ANNs make it somewhat
impractical to implement in a simple model.

2. Methodology
2.1 Major considerations, constraints, assumption and metrics

The design process for the model logic was largely guided by the existing budget modeling logic. The
existing model logic can be found in Appendix A. Each step of the existing model logic was analyzed to
assess whether it should remain the same, be improved, or be redesigned. The only constraints given by
the client were that the model output should be of a similar format to the existing model. The existing
model outputs were hourly budgets by end use (HVAC, kitchen, plug loads, and lighting) for an entire
year.

From our literature review, we were interested in utilizing weather and occupancy data to better predict
energy consumption. Considering future weather predictions become less accurate farther into the future,
the question of how far into the future the model must predict was raised. After talking with the client and
reviewing the dashboard graphics that the model’s output would eventually feed into, it was agreed that
predicting energy budgets one week out would be sufficient.
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The next consideration was the availability of data. To incorporate weather data into the model, the
dashboard would have to be able to connect to a data source and pull in hourly temperature predictions
periodically. The team noticed that the existing dashboard graphics include an outdoor air temperature
value. The client shared that the temperature is displayed through an API connection to the website Dark
Sky (https://darksky.net/dev). Dark Sky also has hourly predictions of outdoor temperature for over a
week into the future, so it was determined to be the best data source. Dark Sky does not have historical
temperature data, so temperature data from a sensor on campus that is stored in UC Davis’ PI Database
was determined to be the best option. Occupancy data was determined to be best approximated by
specifying if a given day is a weekend or not, holiday or not, and if UC Davis school is in session or not.
This data was all readily available.

The final consideration was whether a dynamic model that is updated every week or more frequently with
data connections through API could be utilized and incorporated into the West Village Energy Dashboard.
The idea of a dynamic version of the model was described to the client and her programming team and
determined to be technically feasible if the model was coded in python and the outputs stored in an SQL
database.

When designing the model, the assumptions made were that the Dark Sky and PI Database temperature
values are in agreement, hourly temperature predictions a week into the future are accurate, and the
historical metered data of the end uses at West Village is accurate and representative of a typical year.

2.2 Equipment and Procedure

2.2.1 Model Logic

The model is built to predict how much electricity a building can consume by end use (HVAC, lighting,
kitchen, and plug loads) in any given hour for the building to be on track to have total energy
consumption for the year be less than the photovoltaic generation. A relationship between temperature
and occupancy inputs and predicted energy consumption has been developed based upon a year of data
from 2018/2019.

The inputs to the model are occupancy characterizations (weekday or weekend, holiday or not holiday,
and UC Davis school in session or no school in session) and cooling degree days (CDD) and heating
degree days (HDD). Degree days are a means of incorporating outdoor temperature that reflect both
temperature value and duration of temperature value. CDD and HDD can be calculated using the
equations:

(1)𝐶𝐷𝐷 =  
ℎ𝑜𝑢𝑟=1

24

∑ (𝑇
𝑜𝑢𝑡, ℎ𝑜𝑢𝑟

 −  65)  𝑓𝑜𝑟 ℎ𝑜𝑢𝑟𝑠 𝑤ℎ𝑒𝑛 𝑇
𝑜𝑢𝑡

 >  65

(2)𝐻𝐷𝐷 =  
ℎ𝑜𝑢𝑟=1

24

∑ ( 65 −  𝑇
𝑜𝑢𝑡, ℎ𝑜𝑢𝑟

)  𝑓𝑜𝑟 ℎ𝑜𝑢𝑟𝑠 𝑤ℎ𝑒𝑛 𝑇
𝑜𝑢𝑡

 <  65

Where is the outdoor temperature for each hour of the day. The occupancy characterizations,𝑇
𝑜𝑢𝑡, ℎ𝑜𝑢𝑟

CDD, and HDD for each day are then input into the linear regression equation for each end use and the
output given is an energy fraction, , for each end use in each day. is explained𝐸𝐹

𝑒𝑛𝑑 𝑢𝑠𝑒, 𝑑𝑎𝑖𝑙𝑦
𝐸𝐹

𝑒𝑛𝑑 𝑢𝑠𝑒, 𝑑𝑎𝑖𝑙𝑦

by equation 3. Linear regression equations developed can be found in Appendix B.

5

https://darksky.net/dev


(3)𝐸𝐹
 𝑒𝑛𝑑 𝑢𝑠𝑒, 𝑑𝑎𝑖𝑙𝑦

 =  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑎𝑖𝑙𝑦 𝑒𝑛𝑑 𝑢𝑠𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑎𝑖𝑙𝑦 𝑒𝑛𝑑 𝑢𝑠𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

To calculate the ZNE daily energy budget for each end use, the average daily photovoltaic production,
, and the fraction of daily budget allocated to each end use, , must be taken into𝑃𝑉

𝑏𝑢𝑑𝑔𝑒𝑡, 𝑑𝑎𝑖𝑙𝑦
𝐹

𝑒𝑛𝑑 𝑢𝑠𝑒

account. These values are given by equations 4 and 5:
(4)𝑃𝑉

𝑏𝑢𝑑𝑔𝑒𝑡, 𝑑𝑎𝑖𝑙𝑦
 =  𝑎𝑛𝑛𝑢𝑎𝑙 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑃𝑉 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 / 365

(5)𝐹
𝑒𝑛𝑑 𝑢𝑠𝑒

 =  
𝑑𝑎𝑦=1

𝑛

∑ (𝑑𝑎𝑖𝑙𝑦 𝑒𝑛𝑑 𝑢𝑠𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)/𝑛

The PV production for each building is found by weighting the total community annual PV production by
each building’s proportion of the community’s annual electricity consumption.

To obtain the end use budgets for each day, equation 6 is used.
(6)𝐵𝑢𝑑𝑔𝑒𝑡

𝑒𝑛𝑑 𝑢𝑠𝑒, 𝑑𝑎𝑖𝑙𝑦
= 𝐸𝐹

𝑒𝑛𝑑 𝑢𝑠𝑒, 𝑑𝑎𝑖𝑙𝑦
× 𝑃𝑉

𝑏𝑢𝑑𝑔𝑒𝑡, 𝑑𝑎𝑖𝑙𝑦
 × 𝐹

𝑒𝑛𝑑 𝑢𝑠𝑒
 

Finally, to convert the daily energy budget for each end use, , into hourly budgets, the𝐵𝑢𝑑𝑔𝑒𝑡
𝑒𝑛𝑑 𝑢𝑠𝑒, 𝑑𝑎𝑖𝑙𝑦

daily budget is multiplied by the average percentage of energy that each end use consumes in each hour of
the day. Separate percentages are used for weekdays and weekends. These values are given in Appendix
C.

The model logic was coded in python for inclusion in the West Village Energy Dashboard. The python
code for the model is included in Appendix D.

2.2.2 Data Sources
To develop the linear regression equations, end use energy consumption data collected from HOBO
loggers in the West Village and hourly temperature data from the UC Davis PI database (tag aiTIT4045),
are used. When running the model, hourly temperature predictions for the next seven days from Dark Sky
(https://darksky.net/dev) are used. In addition, and values are used that were𝑃𝑉

𝑏𝑢𝑑𝑔𝑒𝑡, 𝑑𝑎𝑖𝑙𝑦
𝐹

𝑒𝑛𝑑 𝑢𝑠𝑒

calculated from past HOBO logger data.

2.2.3 Model Development
The development of the model relies heavily on historic solar production and energy consumption by end
use data. This information has been collected by HOBO loggers in each of the West Village buildings
(1715, 1605, 1590, 215) and was provided by the client. The data provided had gaps in data collection and
many outlier values due to challenges with the loggers. Aggregating and cleaning the data was time
consuming and therefore was only conducted for building 1715. The data provided by the client for 1715
was: nov 2018, dec 2018, jan 2019, feb 2019, mar 2019, apr 2019, may 2019, jun 2019, jul 2019, aug
2018, sep 2019, oct 2019. A python script was developed to combine each month of data into one
dataframe. To clean the data, duplicate readings from different files were removed and HOBO logger
power readings in watts were converted to kWh for each minute, each hour, and each day. For building
1715, the values for September 19 to October 11 were removed because the data was missing.
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2.2.3.1 Linear Regression

Based on findings from the literature review, it was decided that the energy consumption predictions that
informed the greater model would be based on linear regression. These linear regression models were
created in R and were used to predict the various end uses’ daily consumption factors (the models’
response variables).  Based on the data available to the group, the explanatory variables that could be
leveraged to predict the response variable included: heating degree day, cooling degree day, and whether
it was a holiday, weekday, or if UC Davis classes were in session.

The strategy for determining the best model for each end use was to start by including all explanatory
variables in a linear model. Based on the results of the initial model, variables that were shown to have
low statistical significance to the response variable were removed and the model was run again. This
iterative process was then repeated based on the statistical significance of explanatory variables and the
adjusted R2 value of the model. Beyond adding and subtracting variables, incremental changes in each
model iteration also included taking the logarithm of the response variable, creating interaction variables
between the different explanatory variables, and creating heating degree day and cooling degree day
threshold “dummy variables” to allow the model to adjust based on different degree day thresholds. These
thresholds were added upon inspection of the relationship between heating/cooling degree days and end
use loads. To illustrate, an example plot showing HVAC load vs heating degree day is included in
Appendix B.  In the plot, it can be seen that above a certain threshold of heating degree day values, the
relationship becomes more linear.  Once the best (i.e. most predictive) model based on the explanatory
variables available was determined to be found by the modeler, the process was complete. Results from
these models used to predict daily end use consumption factors were then passed along to inform the other
aspects of the overall budget model.

Through this process, it was found that the explanatory variables available were very poor predictors of
Plug and Kitchen load end use consumption factors. This was determined based on very low adjusted R2

values of all models iterated for these end uses as well as results showing non-statistically significant
explanatory variables.  In summary, results showed that weather (cooling and heating degree days) and
occupancy indicators (weekend, weekday, school being in session) had very little effect on the plug and
kitchen loads in West Village building 1715. In the end the group concluded to use the original model’s
(i.e. the existing model before this project) logic for kitchen and plug loads. The HVAC and lighting end
use models, on the other hand, showed higher adjusted R2 values and were therefore utilized. The
resulting linear regression equations along with their adjusted R2 values based upon data from 2018/2019
can be found in Appendix B.

2.2.3.2 Hourly Budgets

The hourly budgets were based on the historical energy consumption data collected for Building 1715
2018/2019. The data was collected throughout the year on an hourly-basis depending on end use (HVAC,
kitchen, plug loads, and lighting). Microsoft Excel was used to organize and clean the data, which was
then uploaded into the Python model. The hourly budgets were calculated using the following algorithm:
first, the hourly consumption data depending on end use was set up in a way that would take weekdays
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versus weekends and school in-session versus holidays into consideration. Second, the entire year was
split up into its months. Third, heating degree days and cooling degree days were assigned to each day of
the month. Fourth, the average consumption during any given hour throughout each day of the month was
calculated depending on the end use. Extensive data cleaning was required in this step since the HOBO
loggers used to track energy consumption produced a significant amount of values that were undefined.
After cleaning the data to exclude undefined values for the entire twelve months of the year, the model
then produced twenty-four averages (for 24 hours) for every hour of the day for each of the four end uses.
The same calculation was iterated 12 times (for the twelve months). Fifth, all of these averages were then
converted into percentages providing information on how energy is consumed depending on end use
throughout every hour of the day in any given month.

3. Results
To determine if the developed model performs better than the existing model in daily predictions, the
mean square error (MSE) for each model compared to measured values was calculated. The formula to
calculate MSE is:

(7)𝑀𝑆𝐸 =  1
𝑛

𝑦=1

𝑛

∑ (𝑌
𝑖

− 𝑌
𝑖

) 2

Where is an observed value, is a predicted value, and is the number of data points. MSE is a𝑌
𝑖

𝑌
𝑖

𝑛

measure of how well a model predicts values. For this analysis, the MSE was calculated based on
predicted energy use from each model, not ZNE budget. This was done so the values could be compared
to actual end use consumption.

The mean square error was calculated for the 2018/2019 timeframe that was used to develop both the new
and existing model. This MSE value is not as accurate because it is compared to the training dataset and a
model may be overfitted to that data, meaning it is good at predicting the values in that dataset but not
new values. Therefore the MSE was also calculated for May and June of 2018. An MSE value for a whole
year of data was desired, but data quality issues limited the range to only two months. All calculated MSE
values are given in Table 1.

Table 1: MSE values for HVAC and Lighting predictions

In addition to calculating MSE, the predictions for each model and actual value for May and June of 2018
were graphed, shown in Figures 1 and 2.

8



Figure 1: HVAC predictions for building 1715 from the existing (old) and
new models compared to actual recorded values.

Figure 2: Lighitng predictions for building 1715 from the existing (old) and
new models compared to actual recorded values.

4. Discussion
The goal of this modeling effort was to accurately predict energy consumption of each end use so that
those values could be utilized to develop ZNE budgets. The accuracy of each model to predict daily
energy consumption for each end use was evaluated using MSE. The hourly predictions were not
evaluated because the same methods were used in both models to obtain hourly predictions from daily
predictions. For HVAC, the MSE for the new model outperformed the existing model. For Lighting, the
MSE of the new model for May and June 2018 out performed the existing model, but performed worse
for the 2018/2019 timeframe. Our team is confident that the new model is a better predictor of HVAC
energy consumption. For lighting, our team would have more confidence that the new model is better if
we could test it on a larger dataset. For May and June 2018, the MSE values are drastically improved,
which indicates the existing model is likely over-fitted to the training dataset and is a poor predictor of
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data outside of the 2018/2019 timeframe. Though more data to evaluate the models would increase
confidence, our team believes the new model is a better predictor for HVAC and lighting end uses.
Because both models utilize energy predictions to calculate ZNE budgets, we also believe the new model
leads to more accurate ZNE budgets. It’s important to mention, however, uncertainties did exist,
especially in the metered data. As previously mentioned, the metered data recorded values that were
undefined, which makes it difficult to determine what was happening during those certain hours.
Additionally, in the current model, a single year was only analyzed to calculate the hourly consumption
data. More years would be needed to do a better job in capturing seasonality and determining any outliers
in the data.

5. Recommendations and Conclusions
Since its inception, the West Village at UC Davis has served as a case study for ZNE community design
and implementation. Like many ZNE buildings and communities, it has also served as a reminder that
simply designing for ZNE does not mean it will be achieved. Data verification of ZNE status is an
important tool that should be used to ensure best laid plans for ZNE are realized. Beyond understanding
whether a facility or community achieves ZNE in a given year, researchers like our client, Dr. Angela
Sanguinetti, are hoping that informing tenants in their building’s ZNE performance can influence whether
or not that building will reach ZNE status by the end of the year.

Building occupant engagement efforts have included the creation of the West Village Energy Dashboard,
which informs West Village occupants of energy consumption budgets that should be met in a given hour,
day, week, and year to achieve annual ZNE status. Before this project, these budgets were informed by a
model that was built on inaccurate assumptions and lacked flexibility and accuracy. To address this, our
group, informed by reviewing relevant literature in the field of ZNE modeling, built a new model. The
model created is dynamic and offers a moving energy budget based on weather and occupancy indicators.
Linear regression was leveraged to increase the accuracy of end use energy consumption factors that were
the basis for creating new energy budgets. Model validation proved that the new model outperformed the
old model significantly in terms of energy consumption predictions for both HVAC and lighting loads for
Building 1715 in West Village. Kitchen and plug load predictions were not able to be improved based off
the data available to the team, so the original model’s logic was implemented for these end uses. Future
work on implementing our model to the three other commercial buildings (1590, 1605 and 215) in West
Village is recommended to calculate more accurate consumption predictions at the least for the HVAC
and lighting loads. Overall, however, the team accomplished its goal of creating a more accurate energy
model that can be applied to all the buildings at West Village and inform its Energy Dashboard.
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7. Appendix

7.1. Appendix A
The existing ZNE budget model developed by Dr. Sanguinetti and team:

Calculating ZNE Budgets

● Step 1: Calculate Community Annual ZNE Budget. The annual ZNE budget for the
community of West Village energy and transportation research centers (all four buildings
combined) is equal to the amount of energy produced annually from the photovoltaic
(PV) solar panels that are dedicated to those spaces.

Community Annual ZNE Budget = ∑(Buildingk (1-4) Annual Production)

● Step 2: Calculate Building Annual ZNE Budgets. To calculate an annual ZNE budget
for each building, we weighted the community annual ZNE budget by each building’s
proportion of the community’s annual electricity consumption, using a year’s worth of
historical consumption data. This yielded an annual ZNE budget for each building that
would be fair for the competitive elements of the dashboard, essentially creating a
handicap factor to cancel out building (dis)advantages.

Buildingk Annual ZNE Budget= Community Annual ZNE Budget * (Buildingk Annual Consumption /
Community Annual Consumption)

SIDEBAR: Below are two data tables that show calculations of building annual ZNE budgets
based on two different timeframes. This can give you a sense of how the Production ranges. I
think ideally, we would have a dynamic model that calculates the annual ZNE budgets based on
the past 365 days of consumption and production, but it we can’t do that, how valid is it to use
the budgets created based on past data into the future?

Annual Production and Consumption for 2017-2018, and Annual ZNE Budgets

Building
Annual Consumption

(MWh/yr)
Annual Production

(MWh/yr)
ZNE

Performance
Weight

ZNE Budget
(163*Weight)

Pooled ZNE
Performance

1590 Tilia 46.0 40.0 87% 46/174 43 93%

1605 Tilia 53.6 47.6 89% 53.6/174 50 93%

1715 Tilia -- -- --

215 Sage 74.4 74.9 99% 74.4/174 69.69 93%

Total 174 162.5 94% N/A

Annual Production and Consumption for 2018-2019, and Annual ZNE Budgets
Building Annual Consumption Annual Production ZNE Weight ZNE Budget Pooled ZNE
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(MWh/yr) (MWh/yr) Performance (187*Weight) Performance

1590 Tilia 46.1 34.4 75% 46.1/244.4 35.2 76%

1605 Tilia 49.3 46.1 94% 49.3/244.4 37.7 76%

1715 Tilia 71.9 37.8 53% 71.9/244.4 55 76%

215 Sage 77 68.6 89% 51.8/244.4 39.6 76%

Total 244.4 187 76.5%

● Step 3: Calculate Building Weekday and Weekend Hourly ZNE Budgets for Each
Month. In order to convey ZNE building performance throughout the year (e.g., weekly,
daily, and even hourly), we created ZNE budgets for every hour of the day, separately for
weekdays and weekend days, for each month, for each building (a total of 48 hourly
budgets for each month*building, 24 for weekdays and 24 for weekends). We used the
same weighting logic, this time weighting each building’s annual ZNE budget by the
proportion of consumption for each hour of weekday/weekend*month relative to the
building’s annual consumption, again using a year’s worth of historical consumption
data. These hourly ZNE budgets are used in the building dashboard weekly leaderboard
and heat map 24-hour and weekly views. Hourly ZNE budgets are summed up for daily
ZNE budgets, used in the heat map monthly and annual views.

Buildingk Monthk (Jan -Dec) Weekday Hourk (0-24) ZNE Budget= Buildingk Annual ZNE Budget * (Buildingk

Monthk Mean Weekday Hourk (0-24) Consumption / Buildingk Annual Consumption)

Buildingk Monthk Weekend Day Hourk ZNE Budget= Buildingk Annual ZNE Budget * (Buildingk Monthk

Mean Weekend Day Hourk (0-24) Consumption / Buildingk Annual Consumption)

● Step 4: Calculate Building End Use ZNE Budgets. Using the same logic as Steps 2
and 3, we created annual, and hourly ZNE budgets for each end use in each building for
each month (separate for weekdays and weekends). These goals are used in the heat
map visualizations on the building dashboards.

Buildingk End Usek Annual ZNE Budget= Buildingk Annual ZNE Budget * (Buildingk End Usek Annual
Consumption / Buildingk Annual Consumption)

Buildingk Monthk End Usek Weekday Hourk ZNE Budget= Buildingk End Usek Annual ZNE Budget *
(Buildingk Monthk End Usek Mean Weekday Hourk Consumption / Buildingk End UsekAnnual

Consumption)

Buildingk Monthk End Usek Weekend Day Hourk ZNE Budget= Buildingk End Usek Annual ZNE Budget
* (Buildingk Monthk End Usek Mean Weekend Day Hourk Consumption / Buildingk End UsekAnnual

Consumption)
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7.2. Appendix B
The following plot shows the relationship between heating degree day and HVAC load.  After a
certain threshold, the relationship appears more linear:
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The developed linear regression equations for HVAC and lighting in building 1715 are:
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7.3. Appendix C
The average percentage of energy that each end consumes in each hour of the day for building 1715 are
given in the table below. The hour 0 corresponds to 12:00 AM.
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7.4. Appendix D
Model Logic in Python code:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pandas.tseries.holiday import USFederalHolidayCalendar

In [2]:

## utilize existing model to get the annual budget for each buidling in kWh
annual_1715 = 55.01350245*1000
#annual_1590 = 35.27291326*1000
#annual_1605 = 37.72135843*1000
#annual_215 = 58.91571195*1000

In [3]:

## get average daily  PV budget for each building in kWh
day_avg_1715 = annual_1715/365

In [4]:

# get average daily end use budget for each building in kWh

# % for each end use based on Aug 2018 through Jul 2019
avg_pct_1715_hvac = 0.477918249531868 #all 1715 calcs exclude 9/18 through 10/12 data
avg_pct_1715_kitchen = 0.0221182004710866
avg_pct_1715_light = 0.295831392155982
avg_pct_1715_plug = 0.204132157841063

In [5]:

#read in hourly weather data for the the week
from google.colab import files
uploaded = files.upload()

Upload widget is only available when the cell has been executed in the current browser session. Please
rerun this cell to enable.

Saving sample_OAT.csv to sample_OAT.csv

In [6]:

import io
future_temp = pd.read_csv(io.BytesIO(uploaded['sample_OAT.csv']))
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In [7]:

#format temperature data
future_temp["Timestamp"]=pd.to_datetime(future_temp["Timestamp"], utc=True) #make index date
time
future_temp.set_index("Timestamp", inplace=True)
future_temp["aiTIT4045"] = pd.to_numeric(future_temp["aiTIT4045"],errors='coerce') #make correct
datatype

In [8]:

#get info from data
pred_year = future_temp.index[1].year #get the year we are predicting budgets for

In [10]:

# import baseline predictions for the year
#there is another python script to generate this file that should be used to make this file more
dynamically
from google.colab import files
uploaded = files.upload()

Upload widget is only available when the cell has been executed in the current browser session. Please
rerun this cell to enable.

Saving old_model_budgets_1715_2021.csv to old_model_budgets_1715_2021.csv

In [11]:

import io
budget = pd.read_csv(io.BytesIO(uploaded['old_model_budgets_1715_2021.csv']))

In [28]:

#read in hourly weather data for the past before the week being predicted
#in the future will need to make an API connection to the pi database, for now use a manual file
upload
# in this example we upload hourly temp data Jan 1 through May 2
from google.colab import files
uploaded = files.upload()

Upload widget is only available when the cell has been executed in the current browser session. Please
rerun this cell to enable.

In [14]:

import io
past_temp = pd.read_csv(io.BytesIO(uploaded['previous_2021_OAT.csv']))
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In [15]:

#format temperature data
past_temp["Timestamp"]=pd.to_datetime(past_temp["Timestamp"], utc=True) #make index date time
past_temp.set_index("Timestamp", inplace=True)
past_temp["aiTIT4045"] = pd.to_numeric(past_temp["aiTIT4045"],errors='coerce') #make correct
datatype

In [16]:

#combine all temp data into one dataframe
temp = past_temp.append(future_temp)

In [17]:

#remove duplicates
temp = temp[~temp.index.duplicated(keep='last')]

In [18]:

#calculate cdd and hdd from temperature data
temp["diff"] = temp["aiTIT4045"]-65
temp["cdd"] = temp.loc[temp["diff"] > 0, "diff"]
temp["hdd"] = temp.loc[temp["diff"] <= 0, "diff"]
temp["hdd"] = temp["hdd"]*-1
temp = temp.resample("D").sum()

In [19]:

#include only useful columns
temp.drop(columns=["aiTIT4045", "diff"], inplace=True)

In [20]:

#classify each day in the week - school/noschool, weekend/weekday, holiday/noholiday
def is_school(i):

q_su18 = (i > pd.Timestamp("2018-06-25")) & (i < pd.Timestamp("2018-09-15"))
q_f = (i > pd.Timestamp("2018-09-24")) & (i < pd.Timestamp("2018-12-08"))
q_w = (i > pd.Timestamp("2019-01-07")) & (i < pd.Timestamp("2019-03-16"))
q_sp = (i > pd.Timestamp("2019-04-01")) & (i < pd.Timestamp("2019-06-07"))
q_su19 = (i > pd.Timestamp("2019-06-24")) & (i < pd.Timestamp("2019-09-14"))
school = q_w | q_sp | q_su18 | q_f | q_su19
return school

def is_weekday(i):
return i.dayofweek // 5 == 0 # equivalent to i.dayofweek < 5

In [21]:
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temp.index = temp.index.tz_localize(None) # tz_aware --> tz_naive
temp["school"] = is_school(temp.index)
temp["weekday"] = is_weekday(temp.index)

In [22]:

cal = USFederalHolidayCalendar()
holidays = cal.holidays(start=temp.index.min(), end=temp.index.max())
temp['holiday'] = temp.index.isin(holidays)

In [23]:

#utilize linear regression to calculate the energy factor for each day in the week for each end use
and also total
#add columns to temp dataframe: hvac_ef, light_ef, kitchen_ef, plug_ef

temp["hdd_lim_hvac"] = temp["hdd"] < 185

In [24]:

#linear regression equation for HVAC
#lighting linear regression equation needs to be input in the future
temp["hvac_ef"] =
0.460846226321002+(0.080724243377688*temp["hdd_lim_hvac"])-(0.0597729876288952*temp["w
eekday"])+(0.0221138821784112*temp["cdd"])+(0.000336844583232445*temp["hdd"])+(0.24837176
9331151*temp["hdd_lim_hvac"]*temp["weekday"])-
(0.0210618352410019*temp["cdd"]*temp["hdd_lim_hvac"])+(0.448886014572328*temp["weekday"]*t
emp["cdd"])-(0.000506370685544067*temp["hdd"]*temp["hdd_lim_hvac"])+(0.00250904388724317*t
emp["weekday"]*temp["hdd"])-(0.000100309969562149*temp["cdd"]*temp["hdd"])-(0.447821031678
69*temp["hdd_lim_hvac"]*temp["weekday"]*temp["cdd"])-(0.0025026499525651*temp["hdd_lim_hva
c"]*temp["weekday"]*temp["hdd"])+(0.0000995371331836865*temp["hdd_lim_hvac"]*temp["hdd"]*te
mp["cdd"])-(0.00181900859623164*temp["weekday"]*temp["cdd"]*temp["hdd"])+(0.00179899888128
381*temp["hdd_lim_hvac"]*temp["weekday"]*temp["cdd"]*temp["hdd"])

In [25]:

#apply energy factor to get the kWh budget for each day in the week for each end use and also total
temp["hvac"] = temp["hvac_ef"]*avg_pct_1715_hvac*day_avg_1715
#temp["light"] = temp["light_ef"]*avg_pct_1715_light*day_avg_1715
#temp["kitchen"] = temp["kitchen_ef"]*avg_pct_1715_kitchen*day_avg_1715
#temp["plug"] = temp["plug_ef"]*avg_pct_1715_plug*day_avg_1715

In [26]:

temp = temp.resample("H").ffill()

In [29]:
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# get hourly kWh budgets for each day in the week
from google.colab import files
uploaded = files.upload()

Upload widget is only available when the cell has been executed in the current browser session. Please
rerun this cell to enable.

Saving hourly_budgets.csv to hourly_budgets.csv

In [30]:

import io
hourly = pd.read_csv(io.BytesIO(uploaded['hourly_budgets.csv']))

In [31]:

#apply hourly budgets
temp["hvac_hr"] = 0
for i in temp.index:

hour = i.hour
if i.dayofweek // 5 == 0:

temp.loc[i, "hvac_hr"] = hourly.loc[hour, "HVAC"]*temp.loc[i, "hvac"]
else:

temp.loc[i, "hvac_hr"] = hourly.loc[hour, "HVAC_wknd"]*temp.loc[i, "hvac"]

In [32]:

#output is temp dataframe with ZNE budget for HVAC as temp["HVAC_hr"]
temp

Out[32]:

cdd hdd scho
ol

weekd
ay

holid
ay

hdd_lim_h
vac

hvac_
ef hvac hvac_

hr

Timestamp

2021-01-01
00:00:00 0.00000 430.8753

02 False True True False 1.6272
96

117.2186
41

0.6149
50

2021-01-01
01:00:00 0.00000 430.8753

02 False True True False 1.6272
96

117.2186
41

0.5683
07

2021-01-01
02:00:00 0.00000 430.8753

02 False True True False 1.6272
96

117.2186
41

0.5496
04
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2021-01-01
03:00:00 0.00000 430.8753

02 False True True False 1.6272
96

117.2186
41

0.5311
65

2021-01-01
04:00:00 0.00000 430.8753

02 False True True False 1.6272
96

117.2186
41

0.4784
88

... ... ... ... ... ... ... ... ... ...

2021-05-09
20:00:00

307.524
67 0.000000 False False False True 0.8651

01
62.31560
1

3.0110
61

2021-05-09
21:00:00

307.524
67 0.000000 False False False True 0.8651

01
62.31560
1

2.4715
61

2021-05-09
22:00:00

307.524
67 0.000000 False False False True 0.8651

01
62.31560
1

1.3566
29

2021-05-09
23:00:00

307.524
67 0.000000 False False False True 0.8651

01
62.31560
1

0.8910
85

2021-05-10
00:00:00 8.51898 0.000000 False True False True 0.7482

04
53.89521
1

0.2827
44

3097 rows × 9 columns
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